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Abstract

Molecular dynamics (MD) simulations have become a powerful tool for elucidating complex physical phenomena.
However, MD method is very time-consuming. This paper presents a method to accelerate computation of MD simula-
tion. The acceleration is achieved by take advantage of modern graphics processing units (GPU). As an example, the ther-
mal conductivities of solid argon were calculated with the GPU-based MD algorithm. The test results indicated that the
GPU-based implementation is faster than that of CPU-based one. The speedup of a factor between 10 and 11 is realized.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Molecular dynamics (MD) is a widely-used computational tool for simulating the properties of liquids and
solids at atomistic level in research areas such as chemistry, thermodynamics and several other areas [1]. How-
ever, MD simulation is based on an intensive computation process. So far, the time scale and the system size
that can be probed using MD are still limited due to the computational power of current computers. For the
study of problems such as nanofluids and stiction in MEMS devices, millions even billions of atoms are
required. As a result, the computation time will be too long to bear.

Over the past few years, modern graphics processing units (GPUs) for commodity PC hardware has evolved
into a powerful programmable parallel streaming processor. For example, the G70, Nvidia’s most recent
GPU, performs up to 165 billion floating-point multiplies per second (165 Gflops) [2]. However, a 3 GHz Pen-
tium 4 CPU can only theoretically issue around 6 Gflops [3]. The enormous computational potential of GPUs
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has led to an explosion of research in ways to leverage GPUs for general-purpose computation on GPUs
(GPGPU) [4,5]. As pointed out by Macedonia [6] the GPU has entered computing’s mainstream.

At present, Monte Carlo and lattice-Boltzmann model (LBM) have been implemented on GPU. Tomov
et al. [7] reported their implementation of Monte Carlo type simulation on GPU. Their experimental results
have shown that the GPU-based simulation is about three times faster than the CPU version. Li et al. [8,9]
used GPU to accelerate the computation of the LBM, and applied it to a variety of fluid flow problems. They
got a speedup of a factor 8-15 [9]. Buck et al. [10] are planning to use the massive compute power available in
today’s GPU to accelerate all the key components of Gromacs which is one of the leading software packages
used to simulate protein folding.

In this paper, we present an implementation of MD simulation on GPU. As an example, the MD algorithm
will be used to calculate the thermal conductivities of solid argon. Our goal is to reduce the total computa-
tional time of MD simulation at a very high performance/cost ratio with the introduction of the GPU
algorithm.

The paper is organized as follows. In Section 2 the MD algorithm for thermal conductivity calculation is
described. The details of the implementation of MD simulation on GPU are presented in Section 3. In
Section 4 the performance results for our implementation are given and compared with the CPU version.
Finally, our conclusions are summarized in Section 5.

2. MD simulation

In MD simulation, each of the atoms or molecules is treated as a point mass. Given the interaction poten-
tial between atoms, the force acting on each atom can be calculated. Based on Newton’s second law, the
motion of a large number of atoms can be described. From the motion of the ensemble of atoms, a variety
of useful microscopic and macroscopic information can be extracted such as transport coefficients, structural
properties, etc.

In this paper, the Lennard-Jones (LJ) potential is used to describe the energy of interaction between two
argon atoms [11]

o O

where r;; denotes the distance between the two atoms, ¢ is depth of potential well, o is effectively the diameter
of one of the atoms, for argon ¢ = 1.67 X 1072'J, ¢ = 0.34 nm, and 1. is the cutoff radius. The interatomic
force can be calculated by differentiating Eq. (1), and is given by

o= ()| -3C) o e

The velocity Verlet algorithm is chosen to integrate the equations of atom motions. That is [1]
F
r(t+ At) = r(t) + v(t)At + ﬂmz,
v(t 4+ At) = v(t) + I [F(2) + F(t + At)]As,

where At is the time step of calculation, m is the mass of the atom, for argon m = 6.63 x 1072° kg. In classical
MD simulation, the temperature of the system is defined as the kinetic energy of atoms [11]

1 2
T=3%N Z my’ (4)

in which, v; is the velocity, N the number of atoms simulated and kg Boltzmann’s constant.

Three main techniques have been developed to predict the thermal conductivity of a dielectric material
using MD simulations. These are the Green—Kubo (GK) approach (an equilibrium method), a direct applica-
tion of the Fourier law of conduction (a steady state, non-equilibrium method), and unsteady methods [12].
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Since the GK method can be implemented on GPU more easily than the others, it is used in the current inves-
tigation. In GK method, the thermal conductivity is given by [11]

1 +oo
b= [ W0 a0 5

where V is the volume of the simulation cell and (J(¢) - J(0)) is the heat current autocorrelation function
(HCACEF). For a pair potential, such as the LJ potential, the heat current vector is given by

J:ZJiZZ(Eivi+%zrff(Ffj“’i)>a (6)
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where E; is the total energy of atom i, and is given by
|
Ei zimvi +§ ;q’)(r,]) (7)

In order to get the thermal conductivities of bulk material from a small number of atoms, periodic boundary
conditions are applied to the simulation cell in all three axis directions.

3. Details of GPU implementation

Currently, GPUs contain two types of programmable processors: the vertex processors and the fragment
processors. In this study, we implement the MD simulation on fragment processors. There are two main rea-
sons for this [13]. First, there are more fragment processors than vertex processors on a typical programmable
GPU. For example, the GeForce 7800 GTX graphics card used in this paper has 24 fragment processors, and
only 8 vertex processors. Second, the output of the fragment processors goes directly into video memory,
which can be fed straight back in as a new stream of texture data.

The two-dimensional floating-point textures are used to store the atom positions, velocities, forces,
neighbor lists and heat flux. For example, in position texture, each atom position r; = (x,y,z) is represented
as a 32-bit floating point value in the red, green and blue color components of a pixel. These textures are
attached to three framebuffer objects (FBO) respectively. FBO is a new OpenGL extension, which is designed
to replace the pbuffer extension. It is both simpler to use and more efficient than pbuffer. Attaching to FBO
allows a texture to be used for both rendering (write) and texturing (read), so avoid getting data back and
forth between video memory and system memory frequently, which is a GPGPU performance bottleneck.
As a texture cannot be written and read at the same time, we use a pair of position, velocities and forces tex-
tures to compute the new data from the previous values.

Neighbor list is a technique widely used in MD to improving the speed of calculation. Neighbor list is con-
structed with a radius ry;, = . + Ar, and it will be refreshed when it is invalid. The reconstruction procedure of
neighbor list is very time-consuming, and its time complexity is O(N?). For solid simulation, atoms oscillate at
their equilibrium position. Thus a large enough r;(=3.2 in dimensionless unit) is used in this paper in both
CPU- and GPU-based simulation to avoid neighbor list reconstruction during the whole simulation process.

In neighbor list texture, the red and green color components are used to indicate the position coordinate of
the neighbor atoms in the position texture. In order to run efficiently on GPU, the neighbor list of each atom
should be of the same length. Thus the atoms with fewer neighbors are given dummy neighbors. And the blue
component of the neighbor list texture is used to indicate whether the neighbor atom is a dummy one. The
layout of neighbor list texture is similar to the connectivity texture used to implement GPU-based surgical
simulators in [14].

In CPU-based MD algorithm, if atom j is a neighbor of atom i, the interatomic force F(r;) will be calculated
only when r; < r.. In programming, this is implemented by an inner-loop branching. But in GPU fragment
programs, conditional code will deteriorate the GPGPU performance [15]. In our GPU-based MD algorithm,
to avoid branching inside inner loops, r. is set equal to ry;, that is to say, all forces with atoms in neighbor list
are computed.
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According to Newton’s third law, the force atom j acts on atom i(Fj) is equal to the force atom 7 acts on
atom j(Fj;), but opposite in direction, that is F;; = —F;. The fact is commonly used in CPU implementation to
minimize the computation by calculating the force between a pair of atom once. But on GPU, we choose not
to take advantage of this fact, as it would require a second rendering pass and additional information to indi-
cate the sign of the force [14].

As given by Eq. (5), the heat current vector J at different time and the temperature of the system 7 are
needed to calculate the thermal conductivity. The render target of the flux program is the heat flux texture,
where each atom’s contribution to heat flux J; is represented by the color component of a pixel. The image
will be transferred to CPU every 10 time steps and the total heat flux J is evaluated on CPU by summing
J;. The system temperature can be calculated according to Eq. (4). In our GPU implementation, the velocity
texture will be transferred to CPU every 100 time steps to calculate the instantaneous temperature. The system
temperature used in Eq. (5) is the average of these instant temperatures.

4. Experimental results

The following simulations were carried out on a PC with Intel Pentium 3.0 GHz, 1 G main memory. The
graphics chip is GeForce 7800 GTX with 256M video memory. The fragment program was written in Cg [16].

In all the following simulations, a 10 fs time step was adopted. Each simulation involves 600,000 iterations
(6 ns), the first 4 ns was used to attain the thermal equilibrium. And the heat flux and instant temperature were
calculated in the later 2 ns.

After simulation, the HCACEF in Eq. (5) was calculated using Fourier transform. But in GPU-based MD
simulations, the HCACF cannot decay to zero as expected, shown in Fig. 1 (original). This is attributed to the
floating-point error of GPU. Today’s GPUs only support the 32-bit floating-point operations with seven sig-
nificant decimal digits. But 64-bit double precision arithmetic is better for very large-scale computational sci-
ence problems, e.g. MD simulation. Additionally, GPUs floating-point arithmetic is still not IEEE-compliant
with deficiencies in rounding precision [17]. For example, the error of addition and division operation is
[—1.000,0.000] and [—1.199, 1.375], respectively for Nvidia graphics card. And these error bounds are unsym-
metrical. As a result, the average momentum of the system during the whole simulation process is not zero as
initialized, which cause the failure of the HCACF decaying to zero. Fortunately, as shown in Fig. 1, when ¢ is
bigger than the correlation length, the HCACF fluctuates about a constant value. We assume that this con-
stant value is the effect of computation error on HCACF. To get the proper thermal conductivities, the mean
of HCACF from ¢ =10 ps to ¢t = 50 ps was calculated, and subtracted from HCACF, as shown in Fig. 1
(revised). Then the revised HCACF was substituted into Eq. (5) to calculate the thermal conductivity.

Fig. 2 shows the calculated thermal conductivities of solid argon at different temperatures. All the simula-
tions were carried out on GPU using a 2048-atom system. Errors incurred in determining the absolute values
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Fig. 1. Heat current autocorrelation function before and after adjustment.
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Fig. 2. Temperature
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of the thermal conductivity are estimated to be about 10%. The results are consistent with the experimental
data [18]. This justified the method that we used to revise HCACF and the feasibility of GPU-based MD
simulation.

Fig. 3 presents the time in hours of the MD simulation as a function of the system size, running on both the
CPU and the GPU. The CPU algorithm was implemented in standard C and compiled with optimization for
speed. The simulation temperature is 30 K. As shown in Fig. 3, the time consumption increases as the number
of atoms increases in both CPU and GPU implementation. Fig. 4 compares the two from a different perspec-
tive by showing the speedup of GPU over CPU. The speedup factor first increases as the system size increases,
and then it varies between 10 and 11.

5. Conclusion

An equilibrium MD simulation of thermal conductivity based on programmable graphics hardware is pre-
sented in this paper. The calculated thermal conductivities of solid argon are consistent with the experimental
data. The GPU-based implementation is faster than that of CPU-based one. For a 4000-atom system or a lar-
ger one, we get a speedup factor between 10 and 11. To attain these speeds, we have incorporated several opti-
mization techniques into the GPU implementation.
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